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1.  Word Order Variation Among and Within Languages

It has been widely assumed that head-initial languages like English and head-final languages

like Japanese are hierarchically the same, and their contrast in word order has been described

by the head-parameter.  For instance, the English prepositional phrase see Mary and its

Japanese counterpart have the structures in (1a,b) after the head parameter value is fixed for

each language:

(1)  a.       IP                      b.         IP
                                   

       DP        I'                     DP            I'
                                    

     D  INFL     VP                  D         VP     INFL
                                        

      John [past]  V      DP           John-ga   DP     V   ta  
                                              
                see      D                     D       mi

                        Mary                 Mary-o      

In both (1a,b), V asymmetrically c-commands D, and other hierarchical relations among the

non-terminal nodes are the same; only the linear orderings of terminal nodes and of sister

projection nodes are different.  This accords our intuition that linear properties are not

syntactically significant and hierarchical properties are universal.  For example, a reflexive

in object position can refer to the subject, whether it follows or precedes the verb, which

shows that the antecedent-reflexive relation is essentially hierarchical.

     Kayne (1994) challenges the above view, advocating the universal word order rather

than the universal hierarchical structure.  According to Kayne's theory, linear ordering is

mapped from asymmetric c-command relations that hold between non-terminal nodes; thus,
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distinct word orderings should reflect distinct hierarchical structures.  It follows that (1b)

cannot be the structure for the Japanese sentence in question since it involves exactly the

same set of asymmetric c-command relations as those in (1a) and its terminal nodes should be

ordered just as the corresponding nodes in (1a).  Kayne (1994, 2003) replaces (1b) with a

head-initial underlying structure with abstract functional categories, to which movement

operations apply so as to derive the surface head-final order.1  Chomsky (1995) points out

some weaknesses of Kayne's theory such as its crucial reliance on non-branching nodes to

deduce surface order.  The most unattractive aspect, however, seems to be its rejection of

hierarchically parallel analyses of head-initial and head-final languages exemplified in (1a,b).

     Another type of word order variation that is not strongly linked to clear syntactic or

semantic differences has been referred to under the name of scrambling.  (2) is as acceptable

as (1a) without a heavy stress on the initial constituent or a pause after it:

(2)  Mary-o John-ga    mi-ta            'Mary, John saw.'

         -Acc  -NOM go-Past

One dominant approach represented by Saito (1985) and subsequent work is to regard (1b) as

basic and derive (2) by the syntactic operation called scrambling.  Scrambling produces an

adjoined structure and the moved constituent leaves a trace in its original position.  Thus,

(1b) and (2) differ not only in their orderings of the words but also in their hierarchical

properties.  Saito presents syntactic evidence on the structural distinction between (1b) and

(2) but also recognizes that unlike wh-movement and topicalization, clause-internal

scrambling is semantically vacuous in failing to establish a operator-variable relation.2  In

contrast to Saito's position, Hale (1980, 1981), Farmer (1980, 1984) and others claim that the

spec-complement-head (SCH) order exemplified by (1b) is only a tendency.  Hale analyzes

(2) on a par with (1b), giving them flat structures without distinguishing spec and

complement hierarchically.  This approach can capture the word order variation in Japanese

straightforwardly, but it amounts to claiming that Japanese and English are different not only

in word order but also in their hierarchical properties, unlike the analysis in (1a,b).  The

main purpose of this paper is to offer a theory of phrase structure that will assign the same
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hierarchical structure to (1a,b) and (2) without specifying their linear differences syntactically,

and to formulate algorithms that can deduce multiple PF interpretations from the shared

syntactic structure.

    The flexibility in word order or the multiplicity of PF interpretation appears to be

attested only in head-final languages.  English, which is head-initial, allows a certain amount

of word order freedom by shifting a heavy NP rightward as shown in (3a,b), but a light

constituent like the pronoun it cannot be shifted rightward, as shown in (3d):

(3)  a.  They brought the beautiful dress into my room,

    b.  They brought into my room the beautiful dress.   (Fukui (1993: 410))

    c.  They brought it into my room.

    d. *They brought into my room it.

On the other hand, Japanese scrambling moves a constituent leftward, whether it is light or

heavy, as shown in (4a,b):

(4)  a.  sono utukusii doresu-o karera-wa watasi-no heya ni mottekita.

       that beautiful dress-Acc they-Top I-no room to brought

    b.  sore-o  karera-wa watasi-no heya  ni mottekita.

        it-Acc they-Top  I-no      room to brought

It can be said that head-final languages allow wider variation in word order than head-initial

languages, and the variation in the former is always leftward; rightward word flexibility is

non-existent or highly limited.3  Another important asymmetry between head-initial and

head-final languages is pointed out by Greenberg (1964), which is cited by Bach (1970) and

Bresnan (1972) among others.  Bresnan (1972: 42) states that only languages with clause-

initial COMP permit a COMP-attraction transformation.  Logically possible but non-existent

are languages with a clause-final COMP that attracts a wh-phrase rightward.  

     In this connection, Fukui (1993: 400) proposes an interesting account of the correlation

between a value of the head-parameter and word order flexibility based on (5):  

(5)  A grammatical operation (Move alpha, in particular) that creates a structure that is

    inconsistent with the value of a given parameter in a language is costly in the language,
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    whereas one that produces a structure consistent with the parameter value is costless.

According to (5), scrambling in Japanese is costless since it moves a constituent leftward and

does not destroy the head-finality, whereas heavy-NP shift in English, which moves a

constituent rightward and preserves its head-initiality, is likewise costless.  (5) predicts that

Japanese shows mirror-image properties of those of English, but this is not strictly correct, as

has been shown by the contrast between (3) and their Japanese counterparts in (4).

Moreover, (5) incorrectly predicts that at least some head-final languages should have

rightward costly operations that are mirror-images of English wh-movement and comparable

obligatory leftward movements in languages with the SHC order.  The asymmetries can be

restated in terms of Fukui's terminology as (6a,b) :  

(6)  a.  A language has a costless optional movement (or shows flexible word order) only if

        it is head-final, and the operation produces a structure consistent with the head-

        final value (i.e., it is leftward).

    b.  A language has a costly obligatory movement only if it is head-initial, and the

        operation produces a structure inconsistent with the head-initial value (i.e., it is

        leftward).

Setting aside the existence of heavy NP shift, I will assume that (6a,b) largely hold.  (6a,b)

accord with half of Fukui's theory and deny the rest.  To account for (6a,b), I will propose to

regard syntactic structure as consisting solely of lexical items (or terminal nodes in the

standard phrase structure tree); multiple PF-interpretations are deduced from it according to

modified versions of tree traversal algorithms studied in graph and algorithm theories, which

apply to a given graph and yield more than one ordering of its nodes.  This conception of

PF-interpretation will incorporate Fukui's insight on the correlation between a value of the

head-parameter and the directionality of movement and Kayne's ingenious attempt to deduce

word order from configurational properties.

     The rest of this paper is organized as follows: In Section 2, I will replace a standard tree

representation of syntactic structure with a graph that consists solely of lexical items, which is

to be referred to as lexical graph.   A lexical graph is a pair (V, E), where V is the set of
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lexical items, and E is the set of ordered pairs of lexical items that express the syntactic

relation holding between the nodes. I will argue that this conception of syntactic structure

best satisfies the Inclusiveness Condition proposed by Chomsky (1995) and assumed in

subsequent work.  In Section 3, I will claim that the nodes of a lexical graph are indexed

based on the theory of crash-proof structure-building proposed by Frampton and Gutmann

(1999, 2000): they are indexed in ascending order as they are introduced into the derivation in

a crash-proof manner.  In Section 4.1, I will outline three kinds of standard tree traversal

algorithms, which are crucially based on the linear distinction of sister nodes: preorder,

inorder, and postorder.  In Section 4.2, I will first eliminate the linear distinction from the

inorder and postorder algorithms by the use of the crash-proof indexing and the overall

configuration of a lexical graph.  I will then argue that the rigid SHC order of English and

the fairly flexible head-final order of Japanese can be deduced by applying the modified

algorithms to bilingual graphs shared by the languages.  In Section 4.3, the proposed

analysis will be formalized in the programming language C.  Section 5 will examine distinct

traversals of lexical graphs from the viewpoint of economy. Head movement and some other

remaining issues will be briefly discussed in the final section.

2.  The Inclusiveness Condition and Syntactic Structures without Projection Nodes

A standard phrase structure representation contains projection nodes for minimal projections

such as D and INFL, for intermediate projections such as V' and INFL' and for maximal

projections such as VP and IP.  Chomsky (1995: Chapter 4) argues, based on the

Inclusiveness Condition, that minimal projection nodes are redundant and can be naturally

replaced by lexical items they immediately dominate.  Moreover, intermediate and maximal

projections can be likewise eliminated without significant loss of syntactic information as

long as they are not branching.  For instance, (7a) can be simplified as (7b):
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(7) a.      IP                      b.      will*

                                   
     DP        I'                     it       will*
                                      
     D   INFL    VP                    will      be*
                                         
     it     will  V   VP                       be    raining
                    
                 be   V
                      
                    raining

Among the seven nodes in (3b), the asterisked ones correspond to the three branching nodes

in (3a): the IP, the I' and the upper VP. They have no PF effects but are widely posited to

define fundamental syntactic relations.  In particular, the node be* expresses the following:

be and raining are sisters; they form a constituent; and the constituent they form is the same

type as be rather than raining.  The lower will* has analogous functions.  The upper will*

captures the fact that it forms a larger structure with the constituent that is of the same type as

will, and that the resultant structure is also the same type as will. The question arises whether

these syntactic properties can be captured without the be* and will*s.   

     Notice that raining is immediately dominated by be* since it is selected by be, while it

is immediately dominated by the upper will* since it feature-agrees with will.  Let us remove

the asterisked nodes from (7b) and express selection and spec-head agreement in terms of

edges from the head to its complement/spec as follows:

(8)        will
         
      it         be
                 
                   raining

A tree like (8) will be referred to as lexical graph hereafter.  In (8), the left-directed edge

expresses the spec-head agreement, whereas the right-directed edges expresses the selections

by will and be of their respective complements; this linear distinction will be eliminated in

Section 4.  The four nodes in (8) correspond to the four minimal projections in (7b).  The

upper will* and be* in (7b), which are IP and the upper VP in (7a), correspond to the
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subgraphs rooted by will and be in (8), respectively.  More generally, a constituent of the

type X can be defined as X itself or a subgraph that consists of all the nodes X dominates.

One constituent that falls out of this definition is the lower will* in (7b), which corresponds to

the intermediate projection I' in (7a).  This is a welcome result, since an intermediate

projection is syntactically invisible as Chomsky (1994:10) claims.

     Graph-theoretically, a lexical graph like (8) is nothing more than a finite set of nodes

(V) and a finite set of ordered pairs of the nodes (E) that express immediate domination

relations.  (8) is equivalent to (9):

(9)  V={it, will, be, raining}             

    E={<will, it>, <will, be>, <be, raining>}

V corresponds to the initial lexical array .  The ordered pairs in E express the selectional and

agreement relations.  The conception of syntactic structure as a pair of V and E best satisfies

the Inclusiveness Condition in that E is formed solely by set-theoretic operations on the initial

lexical array, which is V.

3.  Building a Lexical Graph and Indexing its Nodes

The PF-interpretation of a standard syntactic tree is obtained by ignoring its non-terminal

nodes and pronouncing its terminal nodes from left to right, and the ordering of terminal

nodes comes from a value of the head parameter set for the language in question.  Obviously,

a lexical graph requires a different PF-interpretive algorithm, since all its nodes need to be

pronounced.  Does a lexical graph possess the linearity required for its PF interpretation?  I

will claim that it originates in its overall configuration.

     Lexical items are introduced into a syntactic derivation one by one, producing a larger

structure in a bottom-up fashion according to the cyclicity.  Frampton and Gutmann (1999,

2000) make this point clear in their theory of crash-proof computation: lexical items are

introduced automatically in the right order, and no crash caused by incorrect order of

selection is possible.  Then, it is natural to expect the right order of structure-building to be

reflected in the PF word order.  Part of their theory relevant to the discussion here can be
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summarized as follows:

(10) (i)  Each step of structure-building is triggered by the introduction of a new head.  

   (ii)  If the new head is subject to selectional/agreement requirements, some of them must

        be satisfied immediately in its entry to the derivation before another lexical item is

        introduced.

   (iii)  Selection takes priority to agreement.

It follows from (10i-iii) that only a lexical item that selects nothing can start the derivation; if

a lexical item that selects a complement were introduced first, its selectional requirement

could never be satisfied by itself and no other lexical items could be subsequently introduced.  

     V in (9a) contains four lexical items. Raining selects nothing and thus can start the

derivation.  The next item to be introduced is necessarily be, which selects a progressive

verb.  The third item is the modal will, which selects a bare verbal form.  Lastly, the

agreement requirement of will is satisfied by merging it with the expletive it.  Suppose the

four lexical items are indexed in ascending order as they are introduced into the derivation.

Replacing the lexical items in V and E in (9a) with their indices results in (11):

(11)  V={0, 1, 2, 3}                          2 (will)
              
     E={<1, 0>, <2, 1>, <2, 3>}           3 (it)      1 (be)
        

                                               0 (raining)

The content of each node is: 0=raining, 1=be, 2=will, and 3=it.  This information will be

explicitly represented in Section 4.2.  The PF-interpretation of (11) can be obtained simply

by putting the nodes in the descending order of their indices,  In other words, the last-in-

first-out pronunciation of the stack of the lexical items can yield the SHC order in the case of

(11).

     Frampton and Gutmann illustrate their theory with the sentence in (12), which involves

movement:

(12)  Men arrived.

(12) consists of three lexical items: men, [past], and arrive.  Arrive selects nominal, [past]
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selects verbal and agrees with nominal, and men selects nothing.  As argued in connection

with (6i-iii), men is the first lexical item to be introduced into the derivation. Men can be

selected by the verb arrive and it can agree with the tense [past].  Given (6iii),  [past]

cannot agree with men before satisfying its selectional requirement.  Thus, arrive is to be

introduced next as a head selecting men.  The remaining lexical item is [past], and it can

select arrive and agree with men.  Given (6iii), [past] is introduced as a head selecting arrive.

The structure constructed so far is as follows:

(13)  V={0, 1,2}                                 2 ([past])

                                               
     E={<1,0>,<2,1>}                            1 (arrive)
                                               
     0=men,1=arrive, 2=[past]                     0 (men)

All the three nodes have been indexed.  Finally, the agreement requirement of [past] is

satisfied by its internal Merge with men.  I argued in Yasui (2003) that internal Merge is not

different from external Merge in adding one ordered pair to E.  The difference is that in

external Merge, one member of a pair is a new lexical item introduced from the lexicon,

while two of the lexical items already introduced form a pair in internal Merge.  Suppose

that the ordered pair <2,0> is just added to E as in (14):

(14)  V={0, 1,2}                                2 ([past])

                                               
     E={<1,0>,<2,1>, <2,0>}                           1 (arrive)
                                               

     0=men,1=arrive, 2=[past]                     0 (men)

Pronouncing the nodes in the descending order of their indices will yield the incorrect order:

[past]-arrive-men.  What is problematic with (14) is that addition of the edge <2,0> does not

alter the index of men, which remains to be 0, though it is the last element affected.  The

bottom-up structure building can be naturally expressed by updating the index of men to 3

and adding <2,3> to E as follows:4
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(15)  V={1,2, 3}                              2 ([past])

                                               
     E={<1,3>,<2,1>, <2,3>}                          1 (arrive)
                                               

     1=arrive, 2=[past], 3=men-Nom             3 0 (men-Nom)

The first ordered pair in E of (14) is <0,1>, and it is replaced by <1,3> in (15).  To facilitate

the understanding of this reindexing process, the original index is struck out and the new

index is boxed in the lexical graph.  The underlined parts in (15) are added or changed from

(14).    Pronouncing the three nodes in the descending order of their indices will produce

the correct word order: men-Nom-[past]-arrive.

     The transitive structure construction can be analyzed in a number of ways.  One

standard assumption is that a verb merges with the object argument before merging with the

subject argument (mediated by the light verb).5  Then, (10iii) is to be refined as follows:

(16)  Selection of internal argument takes priority to that of external argument, and the latter

     takes priority to agreement.

I will also assume, following Lopez (2001), that a non-ECM object is Case-checked in-situ by

the lexical verb that theta-marks it rather than the light verb.  Translating these assumptions

into my framework and applying it to (17) results in (18):

(17)  Women met men.

(18) V={0, 1, 3, 4}                                     3 ([past])
      
    E={<1,0>, <1,4>, <3,1>, <3,4>}                        1 (meet)
                                                   
    0=men-Acc, 1=meet,                     4 2 (women-Nom) 0 (men-Acc)
    3=[past], 4=women-Nom   

The licensing theory of Case is adopted in (18); the two nouns come into the syntactic

derivation with Case-features.  In the graph given in (18), the index of the subject women-

Nom is changed from 2 to 4 for the reason discussed above.  Pronouncing the four lexical

items in the descending order of their indices will result in the correct word order: women-

[past]-meet-men.6

      According to Kayne's theory, spec precedes head and complement since some non-
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terminal node dominating the former asymmetrically c-commands some non-terminal nodes

dominating the latter.  The theory outlined in this section offers an alternative account:

lexical items are indexed in ascending order as they are introduced into or affected in the

syntactic derivation and the SHC order simply reflects the indexing.   

     This conception of word order, however, is too simple to capture the word order

flexibility of head-final languages.  If SHC order is derived from the descending order,

head-final order is expected to be obtainable by pronouncing the input lexical items in the

ascending order of their indices (or in the first-in-first-out manner).  Associating the head-

finality with the ascending order of nodes' indices appears to be on the right track, but such a

simple algorithm can define only one head-final ordering for a single lexical graph, contrary

to the generalization in (6a).  Remember that this paper has been aiming to deduce the SHC

ordering in (1a) and the two head-final orderings in (1b) and (2) from essentially the same

lexical graph.  I will, therefore, turn to more sophisticated algorithms, which fall under

traversal of graphs, or more specifically of acyclic connected graphs (i.e., trees).7  It will be

shown that the algorithms at stake do not require the total ordering of nodes imposed by the

crash-proof syntax; they only need to distinguish spec from complement.

4.  Traversal and the Head Parameter

4.1  Standard Tree Traversal Algorithms

    Tree traversal algorithms can be classified into two major categories: depth-priority and

width-priority traversals.  What seems to be relevant to traversal of natural languages is the

former: starting from the root, we go as deep as possible until reaching some leaf node,

typically the leftmost one; we move back to its mother node and visit the other children  if

any; the remaining nodes are traversed in the same manner.  The process can be illustrated

by the binary-branching tree in (19), where the PF value of each node is given in parentheses:
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(19)              0 (D)
               
          1 (B)         2 (F)
                

    3 (A)    4 (C)   5 (E)    6 (G)

The nodes are traversed in the following order: 0-1-3-1-4-1-0-2-5-2-6-2-0.  If the right child

is given priority at each branching node, they are traversed in the opposite order.  In each

case, non-terminal nodes are visited more than once; node 1, for example, is visited three

times.  Each node, however, are pronounced just once.  There are three kinds of depth-

priority algorithms that differ in the time at which each node is pronounced:  

(20) a.  Preorder: Pronounce a given node before its left child and right child are visited.

    b.  Inorder: Pronounce a given node after its left child is visited and before its right

        child is visited

    c.  Postorder: Pronounce a given node after its left child and right child are visited.

Traversing (15) according to (20a-c) results in (21a-c), respectively:

(21) a.  0-1-3-1-4-1-0-2-5-2-6-2-0 ==> "D B A C F E G"

    b.  0-1-3-1-4-1-0-2-5-2-6-2-0 ==> "A B C D E F G"

    c.  0-1-3-1-4-1-0-2-5-2-6-2-0 ==> "A C B E G F D"

In the three kinds of traversal, the nodes are traversed in the same order but they are

pronounced in different positions, which are marked by underlines.  This convention with

underlines will be adopted hereafter.  The important point here is that three PF-

interpretations can be obtained from a single tree.

     Before converting (20a-c) into algorithms in some programming language like C, the

properties of (19) need to be represented explicitly.  Each node is typically associated with

three kinds of attributes: its pronunciation and its left child and right child.  (19) is

represented in C as follows:

(22) a.  node[0].pfvalue="D"; node[0].left=node[1]; node[0].right=node[2];   

     /* node[0] is pronounced as “D”; its left child is node[1] and its right child is node[2] */

    b.  node[1].pfvalue="B"; node[1].left=node[3]; node[1].right=node[4];
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    c.  node[2].pfvalue="F"; node[2].left=node[5]; node[2].right=node[6];

    d.  node[3].pfvalue="A"; node[3].left=NULL; node[3].right=NULL;

    e.  node[4].pfvalue="C"; node[4].left=NULL; node[4].right=NULL;

    f.  node[5].pfvalue="E"; node[5].left=NULL; node[5].right=NULL;

    g.  node[6].pfvalue="G"; node[6].left=NULL; node[6].right=NULL;

The statements enclosed with /*  */ are annotations and irrelevant to the program.  The

inorder algorithm is recursively defined as follows:

(23) Inorder Traversal

1.    void in_order(int p){  

2.   if(p!=NULL){                              /* If there is a node  */

3.          in_order(node[p].left);              /* Visit its left child  */

4.           printf("%s",node[p].pfvalue);    /* Print or pronounce the node */

5.           in_order(node[p].right;}}            /* Visit its right child */

The root of the whole tree in (19) is node[0].  The application of the function in_order to

node[0] first triggers the application of in_order to its left child, node[1], which in turn

triggers the application of in_order to node[3].  Since node[3] has no children, lines 3 of

(23) has been vacuously executed; and line 4 is carried out, which results in the pronunciation

of "A".  Line 5 is vacuously executed, too.  At this stage, line 3 of the previous application

of in_order to node[1] has been executed; thus, the next step is line 4, which results in the

pronunciation of "B".  Then, line 5 is carried out, which eventually results in the

pronunciation of "C".  At this stage, line 3 of the initial application of in_order to node[0]

has been executed; so line 4 is executed, which results in the pronunciation of "D".  The

remaining three nodes of its right subtrees are traversed and pronounced in similar manners.

The final result is (21b).   The standard postorder algorithm can be obtained by swapping

lines 4 and 5 of (23) , which yields (21c) from (19).  Executing line 4 before lines 3 and 5

defines the preorder algorithm, which derives (21a) from (19).

     Given the three algorithms, the inorder and postorder traversals seem to be first

approximations to deduce SHC and SCH orders, respectively.  If the spec and complement
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of each node are represented as its left child and right child, (23) can properly deduce SHC

order.  (11), for example, can be represented as in (24):

(24) a.  node[0].pfvalue="raining"; node[0].left=NULL; node[0].right=NULL;

    b.  node[1].pfvalue="be"; node[1].left=NULL; node[1].right=0;

    c.  node[2].pfvalue="[past]"; node[2].left=3; node[2].right=1;

    d.  node[3].pfvalue="it"; node[3].left=NULL; node[3].right=NULL;

Applying (23) to node[2] yields the correct surface order.  As for (15), node[3] is doubly-

connected, and it would be pronounced twice as the left child (spec) of node[2] and the right

child (complement) of node[1]: men-Nom [past] men-Nom arrive.  The same problem arises

with (18). This can be circumvented by adding to each node's specification an attribute on its

pronunciation status and revising (23) as (25):

(25)

1.    void in_order(int p){  

2.   if(p!=NULL && word[p].pronounced==0){  /* If p is not pronounced */

3.          in_order(node[p].left);              /* Visit its left child  */

4.           printf("%s",node[p].pfvalue);   /* Print or pronounce the node */

5.           word[p].pronounced=1;             /* Mark it as pronounced */

6.           in_order(node[p].right;}}            /* Visit its right child */

(15) should be represented as (26), where node[k].pronounced=0 means that node[k] is not

pronounced:

(26) a.  node[1].pfvalue="arrive"; node[0].left=NULL; node[0].right=3;   

       node[0].pronounced=0;

    b.  node[2].pfvalue="will"; node[2].left=3; node[2].right=1; node[2].pronounced=0;

    c.  node[3].pfvalue="men"; node[3].left=NULL; node[3].right=NULL;

        node[3].pronounced=0;

Node[3] is the left child of node[2] and the right child of node[1], but lines 2 and 5 of (25)

guarantee that it is pronounced just once as the left child of node[2].

     One might argue that the head-final order of Japanese can be obtained by executing



15

line 6 of (25) before lines 4; in fact, it yields one head-final ordering from a given lexical

graph.  As has been observed in Section 1, however, Japanese word order is flexible as long

as the head-finality is respected.  One way to derive multiple PF-interpretations is to choose

at a branching node either of its child nodes rather than always giving priority to its left child.

Another possibility is to start a postorder traversal from any leaf node and proceed towards

the root generally in the ascending order of the nodes.   This is reasonable since all the leaf

nodes are pronounced before the internal nodes in postorder, as has been exemplified in (21c).

The root of a graph is unique in dominating all the other nodes and that leaf nodes are also

unique in the opposite sense; they dominate no other nodes.  If a postorder traversal starts

from a leaf node, there should be as many head-final pronunciations as the number of leaf

nodes. I will revise the standard inorder and postorder algorithms along this line.

4.2  Revising the Standard Inorder and Postorder Traversal Algorithms

     A standard representation of a graph such as (22) consists of information on each node's

child nodes.  This type of data representation is not appropriate if a graph is traversed in the

opposite direction, from a node to its mother node.  Moreover, the indexing system proposed

in Section 3 has enough information to distinguish the left child (spec) of a branching node

and its right child (complement); the index of the former is larger than that of the latter.   I

will attempt to formulate bidirectional traversal algorithms based on the indexing system.

     Let us first consider the English and Japanese sentences in (1a,b) and (2), which can be

associated with the bilingual lexical graph below:

(27)                 3 (past/ta)
      
                    1 (see/mi)
                                                   

       4 2 (John-Aom/John-ga)  0 (Mary-Acc/Mary-o)

(27) is essentially the same as the transitive construction in (18).  To obtain the English SHC

order in (1a), we should start from the root.  The root immediately dominates two nodes and

the one with the larger index is node 4; so it is visited next.  Node 4 has no children; so we
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go back to the root.  Giving priority to a node with a larger index again would end up with a

hopelessly circular traversal.  This can be avoided by traversing only unpronounced nodes.

When should a node be pronounced, then?  In the standard formalizations, the timing of

each node's pronunciation is regulated by referring to its left and right child, as stated in (20a-

c).  In an inorder traversal, a node is pronounced after its left child is visited and pronounced,

but before its right child is visited and pronounced; it is pronounced after one of its two child

nodes has been pronounced.  Let us revise the standard inorder algorithm as (28), which

does not refer to the left/right distinction of sister nodes:

(28)  Inorder: Pronounce a given node when it immediately dominates no more than one

     unpronounced node.

A binary-branching node is pronounced after one of its two child nodes has been pronounced.

A non-branching internal node is pronounced in its first traversal since it has just one

unpronounced child node originally.  A leaf node is also pronounced in its first traversal

since it immediately dominates no nodes by definition.8  

     In (27), the root is not pronounced in its first traversal since it immediately dominates

two unpronounced nodes.  Node 4 is visited next according to the larger-index-priority

strategy, and it is pronounced right away since it dominates no unpronounced nodes.   We

go back to the root.  The root immediately dominates just one unpronounced node at this

stage; so it is pronounced.  Next, node 1 is visited, which is the only unpronounced node of

the root.  One of node 1's child nodes has been pronounced, so it is pronounced.  Node 0 is

visited and pronounced finally.  The sequence of nodes traversed until they are all

pronounced is given below:

(29)  3-4-3-1-0  ==> (1a) 'John-Nom [past] see Mary-Acc'

(29) corresponds to (1a).  

     It has been argued in Section 3 that SHC order can be derived directly from the

descending order of nodes' indices.  In the analysis proposed above, the indices have a more

limited role of resolving path ambiguities at a binary-branching node, giving priority to its

unpronounced child node with the larger index, which is its spec.  What regulates the overall
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pronunciation is mainly the changing number of each node's unpronounced children.  Thus,

swapping the indices of nodes 1 and 0 in (27) does not affect the result at all; the verb see is

pronounced when it immediately dominates one unpronounced node, after its subject has

been pronounced and before its object is pronounced.9  For ease of exposition, however, I

will continue to assume the indexing system proposed in Section 3.

     Let us next analyze the Japanese counterpart of (27) .  In the standard postorder

traversal stated in (20c), a node is pronounced after all its left and right child nodes have been

pronounced. This can be restated as (30):

(30)  Postorder: Pronounce a given node when it immediately dominates no unpronounced

     node.

A leaf node is pronounced in its first traversal since it immediately dominates no nodes by

definition.  A non-terminal node is pronounced after all its child nodes have been

pronounced.  Traversing (27) just as in (29) but pronouncing its nodes according to (30)

yields (31):

(31)  3-4-3-1-0-1-3  ==> (1b) 'John-ga Mary-o mi-ta'

This corresponds to (1b).

     There is one more PF-interpretation of (27) given in (2).  Note that pronunciation of

all the nodes requires five steps in (29) but 7 steps in (31).  In (31), the non-terminal nodes

are not pronounced at their first traversals.  It is more economical to start a postorder

traversal from a leaf node and proceed in the depth-priority manner.  (27) has two leaf

nodes: nodes 0 and 4.  Let us start from node 0.  Node 0 is pronounced right away

according to (30).  Next, node 1 is visited, as it is the only node connected to node 0.  Node

1 is not pronounced at this stage since it immediately dominates node 4, which is not yet

pronounced.   Node 4 is visited next and pronounced at once as it dominates no

unpronounced nodes.  We go back to node 1, and it is pronounced this time, since both its

child nodes have been pronounced.  Node 3 is visited and pronounced finally.  Starting

from node 4 yields (1b).  The results are given below:

(32) a.  0-1-4-1-3 ==> (2) 'Mary-o John-ga mi-ta'
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    b.  4-1-0-1-3 ==> (1b) 'John-ga Mary-o mi-ta'

(32b) gives the same PF-interpretation as (31) does, but it does more economically.

     It has been demonstrated that one head-initial PF interpretation and two head-final

interpretations have been deduced from the lexical graph in (27). More generally speaking,

there is only one head-initial PF-interpretation but are as many head-final PF-interpretations

as the number of leaf nodes.  This captures the generalization in (6a): A language has a

costless optional movement (or shows flexible word order) only if it is head-final, and the

operation produces a structure consistent with the head-final value (i.e., it is leftward).

     Let us turn to wh-movement to see if the present theory can account for (6b): a

language has a costly obligatory movement only if it is head-initial, and the operation is

leftward.  (33a,b) show that wh-movement must have phonetic effects in English, while

(33c,d) are both allowed in Japanese:

(33)  a.  I don't know what John bought.     

     b. *I don't know John bought what.

     c.  watasi-wa John-ga    nani-o   kaw-ta  ka sir-anai.

         I-Top        -Nom what-Acc buy-Past Q know-not

     d.  watasi-wa nani-o John-ga katta ka sir-anai.

According to the theory here, the embedded interrogative clauses of (33a,c,d) are analyzed as

sharing the bilingual lexical graph in (34):

(34)                       5 ([WH]/ka)

                                                     
                      3 ([past]/ta)
                                                     
                       1 (buy/kaw)
                                                    

     4 2 (John-Nom/John-ga)   6 0 (what-Acc/nani-0)

An inorder traversal starts from node 5.  According to the larger-index-priority strategy,

node 6 is chosen at node 5 as the next node to visit, and node 4 is chosen at node 3.

Traversing (34) in this way and pronouncing its nodes according to (28) results in the

sequence: 5-6-5-3-4-3-1.  This corresponds to the embedded clause of (33a).  The wh-
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phrase is pronounced initially since it is directly connected to the root and has the largest

index.  It is also connected to the verb, but we do not go through he edge between them

since it has become pronounced earlier in the traversal.  This captures the overt property of

English wh-movement.  On the other hand, there are two postorder traversals, starting from

the two leaf nodes.  The embedded clause of (32c) is obtained by starting from node 4 and

traversing in accordance with (30): 4-1-6-1-3-5.  That of (33d) results if node 6 is the

starting node: 6-1-4-1-3-5.  In this traversal, node 6 is pronounced clause-initially on a par

with the object R-expression in (2).        

     The differences in PF-interpretation have been attributed to the distinct set of edges

traversed, as described below:  

(35) a. English (5-6-5-3-4-3-1)                 b. Japanese (4-1-6-1-3-5/6-1-4-1-3-5)  

           5 ([WH])                                 5 (ka)
                                                     
     ([past]) 3  3 (ta)
                                                     
           1 (buy)                                    1 (kaw)
                                                    

4 (John-Nom)      6 (what-Acc)                4 (John-ga)      6 (nani-o)

(34) is not a tree, with two cycles: 3-1-4-3 and 5-6-1-3-5. (35a,b) are two of its spanning trees

with the original root node retained.  <1,4> and <1,6> have been introduced by external

Merge and they are ignored in (35a).10  In (35b), <3,4> and <5,6> are bypassed, which have

been added by Move or internal Merge.   Nodes are pronounced generally downward from

the root in an inorder traversal and upwards from a leaf node in a postorder traversal.  A

moved phrase is connected to a functional head agreeing with it and a lexical head selecting it.

The former is nearer the root than the latter.  Since a given node is pronounced only once,

the moved phrase is pronounced near the functional head in an inorder traversal, while it is

pronounced near the lexical head in a postorder traversal.  In this way, the overt/covert

distinction of movement is contingent on the direction of traversal, which is a version of the

head parameter assumed in the present theory.  This can capture (6b).

     According to the traditional analysis, the embedded clause of (33c) is the canonical
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word order, while that of (33d) results from clause-internal scrambling of the object.  Both

are regarded here on a par, deriving from (34), which is also shared by the English sentence in

(33a).  Besides Saito's theoretical arguments, Miyamoto (2003) and others claim there is

experimental evidence against this conclusion; a scrambled sentence is more difficult to

process than a canonical one.11  What this paper has been concerned with, however, is the

contrast observed between (3) and (4) as well as the outright ungrammaticality of (32b) rather

than a subtle processing difference between (33c,d), if any.  

     It is beyond the scope of this paper to explore all the properties of wh-movement, but

the present theory can offer a simple account of the restrictions on piedpiping observed by

Kayne (1994: 24-25).  Consider the following examples:12

(36) a.  I wonder which bottles of wine John bought.

    b. *I wonder bottles of what John bought.

    c. ?I wonder what John bought bottles of.

What in (33a) is replaced by more complex wh-phrases in (36a-c).  A wh-word appears as

the determiner head in (36a), while it is part of the complement in (36b,c).  The embedded

clauses of (36a) and (36b,c) are to be analyzed as (37a,b), respectively:

(37) a.        8 ([WH])                b.                    7([WH])

                                                     
       6 ([past])                                    5 ([past])
                                                      
         4 (buy)                                     3 (buy)
                                                    
7 5 (John-Nom)  9 3 (which-Acc)       6 4 (John-Nom)   2 (bottles-Acc)

                2 (bottles)                                1 (of)

                1 (of)                                        8 0 (what)

                0 (wine)                                    

Intuitively, wh-movement connects the functional category [WH] with the nearest node

corresponding to a wh-word, which is which in (37a) and what in (37b).  In (37a), the

movement connects which to [WH] and changes the index of the former from 3 to 9; the
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inorder traversal results in: 8-9-2-1-0-1-2-9-8-6-7-6-4.  Note that all the nodes dominated by

which continue to have the original indices after the wh-movement, but they are pronounced

right after it in a depth-priority traversal.  The embedded clause of (36c) is obtained

similarly by the inorder traversal of (37c): 7-8-7-5-6-5-3-2-1.  Since what does not dominate

the rest of the object noun phrase, (36b) is not derivable.

     As expected, a clause-initial wh-phrase in Japanese is not subject to the above

restriction on piedpiping.  A fronted wh-phrase can be complex and a wh-word can appear

anywhere in it as follows:

(38) a.  [ dare-ga  sagasitei   -ta  wain-o ] John-wa  kaw-ta  ka.

        who-Nom looking-for-pastwine-Acc   -Top buy-past Q

       Lit. 'The bottle of wine that who had been looking for did John buy ?'

    b.  [ Mary-ga   doko-de  non-da  wain-o ] John-wa kaw-ta ka.

             -Nom where-at drink-past wine-Acc  -Top buy-past Q

        Lit. 'The bottle of wine that Mary had drunk where did John buy ?'

The wh-phrases in (38) are pronounced initially not because they contain a wh-word but

because they contain a leaf node .  The functional category [WH] is presumably connected

to the wh-word rather than the root of the whole initial constituent, but the edge in question is

bypassed, unlike the cases in (33a).

4.3  Formalization

     To formalize the ideas presented in Section 4.2, it is necessary to revise standard data

representations that are based on the left/right distinction of nodes such as (22).  Remember

that a lexical graph is defined as a pair of V and E in the previous section. The English

version of the lexical graph in (27) is equivalent to (39):

(39) V={0,1,3,4}                                   3 ([past])         
   
    E={<1,0>, <1,4>, <3,1>, <3,4>}                    1 (see)

    0=Mary-Acc, 1=see, 3=[past],           4 2 (John-nom)      0 (Mary-acc)
    4=John-nom         
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It is natural to represent the structure of (39) in terms of the set E.  (39) can be translated in

C as (40) and (41):

(40)  word[0].pfvalue="Mary-Acc"; word[0].pronounced=0;

     word[1].pfvalue="see"; word[1].pronounced=0;

     word[3].pfvalue="[past]"; word[3].pronounced=0;

     word[4].pfvalue="John-Nom"; word[4].pronounced=0;

(41)  rel[1][0]=1; rel[1][4]=1; rel[3][1]=1;  rel[3][4]=1;  

The members of V with their PF values are listed in (40), and they are initially unpronounced

(=0).  The ordered pairs in E correspond to the equations in (41), where 1 means that the

relation holds.  An obvious advantage of (41) is that information on both child and mother

nodes is directly expressed; rel[1][0] means that node[1] is a mother node of node[0] and

node[0] is a child node of node[1].  This enables a traversal to proceed naturally in both

directions, from child to mother and from mother to child.  

     The English version of (34) and the three examples analyzed in (11), (15) and (18) are

likewise represented as (42)-(45), respectively:

(42) (I don't know) what John bought
    word[1]="buy";                                       5 ([WH])
    word[3]="[past]";                                              
    word[4]="John-Nom";                            3 ([past])
    word[5]="[wh]";                                              
    word[6]="what-Acc";                             1 (buy)
                                                  
                                        4 2 (John-Nom)   6 0(what-Acc)
    rel[1][6]=1; rel[1][4]=1; rel[3][1]=1; rel[3][4]=1; rel[5][3]=1; rel[5][6]=1;

(43)  It will be raining.                         

     word[0].pfvalue="raining";                  2 (will)
     word[1].pfvalue="be";                                                            
     word[2].pfvalue="will";                   3 (it-Nom)   1 (be)

 word[3].pfvalue="raining";
                                                        0 (raining)

     rel[1][0]=1; rel[2][1]=1; rel[2][3]=1;
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(44)  Men arrived.   

                                                     2 ([past])
 word[1].pfvalue="arrive";

     word[2].pfvalue="[past]";                 1 (arrive)
 word[3].pfvalue="men-Nom";                

     rel[1][3]=1; rel[2][1]=1; rel[2][3]=1;                  3 0 (men-Nom)

(45)  Women met men.     

     word[0].pfvalue="men-Acc";            3 ([past])
     word[1].pfvalue="meet";                                              
     word[3].pfvalue="[past]";                        1 (meet)
     word[4].pfvalue="women-Nom;                                                    
                                           4 2 (women-Nom)   0 (men-Acc)

     rel[1][0]=1; rel[1][4]=1; rel[3][1]=1; rel[3][4]=1;

Each node's pronunciation status is omitted above.

    It has been discussed that the SHC ordering can be derived from a lexical graph

according to (28), specifically controlled by the number of unpronounced nodes each node

immediately dominates, together with the indexing of all its nodes.   Let us call it

hierarchical inorder traversal to distinguish it from the standard algorithm that is based on the

linear distinction of child nodes.  (28) can be formulated in C as in (46):

(46) Hierarchical Inorder Traversal

1.  void h_in_order(int p){

2.     int i, m=0, nextchild=-1;

3.     if(word[p].pronounced==0){           /* If word[p] has not been pronounced */

4.       for(i=0; i<=sp-1;i++)                            /* Increment counter i */

5.          if (rel[p][i] == 1 && word[i].pronounced==0){   /* Count word[p]'s child */

6.            m = m + 1;                  /* nodes that have not been pronounced */

7.        nextchild=i;}                  /* Store the unpronounced child node */

8.       if(m<=1){      /* If word[p] has no more than one unpronounced child node */

9.          printf("%s ",word[p].data);                    /* Pronounce word[p]  */

10.         word[p].pronounced =1; }              /* Mark word[p] as pronounced */

11.    h_in_order(nextchild);      /* Visit word[p]'s child node with the largest index */
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12.    h_in_order(p);}}                              /*  Backtrack to word[p] */

The function h_in_order takes one argument p, which is the index of a current node.  If

word[p] has not been pronounced, it is subject to lines 4-11.  They are divided into three

major parts: the for-loop on lines 4-7, the conditional on lines 8-10, and calls to h_in_order

on lines 11 and 12.  The for-loop counts m, the number of unpronounced child nodes of

word[p] and stores their indices in the variable nextchild. The value of nextchild is updated if

another child node is found.  When the for-loop is over, nextchild holds the largest index that

satisfies the condition since the counter i in the for-loop is incremented up to sp-1, which is

the largest index of the input lexical item.13  This imposes the larger-index-priority traversal

strategy locally at each node. The conditional on lines 8-10 says that if word[p] immediately

dominates no more than one unpronounced node, word[p] is to be pronounced; otherwise,

nothing is done.  When word[p] is pronounced, its pronunciation status changes from

unpronounced (=0) to pronounced (=1), which will change m of its mother node and enable it

to be pronounced later.  Line 11 guides the traversal to word[p]'s unpronounced child node

with the largest index, and line 12 directs the traversal back to word[p].  The inorder

traversals of (39), (42)-(45) are as follows:

(47) (39) => 3-4-3-1-0

    (42) => 5-6-5-3-4-3-1

    (43) => 2-3-2-1-0

    (44) => 2-3-2-1

    (45) => 3-4-3-1-0

Readers are invited to verify the results by running (46) with the initial values as specified in

(42)-(45).14

     The idea of hierarchical postorder traversal given in (30) can be implemented by

replacing line 8 of (46) repeated as (48a) with (48b):

(48) a.  if(m<=1)

    b.  if(m<=0)    

(48b) says that each node is pronounced when it immediately dominates no unpronounced
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nodes.  (48a,b) correspond to (28) and (30), respectively.  Two possible approaches to

deduce multiple PF-interpretations have been pointed out in Section 4: (i) starting from the

root and proceeding in either direction at each branching node and (ii) starting a traversal

from any leaf node.  I will attempt to formalize (ii).  This calls for further revision of (47),

since it does not let a traversal proceed from leaf node to mother node.  Information on the

mother nodes of each node can be obtained within the for-loop of (46) as (49):

(49)  if (rel[i][p] == 1 && word[i].pronounced==0){  

          nextmother=i; }}             /* Store the unpronounced mother node */

Let us name the function (46) modified with (48b) and (49) as h_post_order (hierarchical

postorder traversal).  Correspondingly, lines 11 and 12 of (46) are to be replaced by (50a,b):

(50) a.  h_post_order(nextchild);   

    b.  h_post_order(nextmother);

Changing (48b) back to (48a) in h_post_order just defined will give the function that is

virtually the same as the original inorder algorithm given in (46).  (48a,b) are two options of

the head-parameter, and the rest is virtually the same between h_in_order and h_post_order.

One more minor revision is needed on line 4 of (46), where the counter i is incremented to

find the child node with the largest index.  If the starting node is a leaf, which has a smaller

index than those dominating it, it is natural to give priority to a node with a smaller index;

nodes are traversed and pronounced basically in the ascending order of their indices.  The

counter i on line 4 of (46) should be incremented or decremented depending on the distance

between the starting node and the root.   

     Going back to the Japanese version of in (39), which has been given in (27), applying

h_post_order to its two leaf nodes, word[4] and word[0], produce (51a,b):

(51) a.  4-1-0-1-3

    b.  0-1-4-1-3

(51a,b) recapitulate the conclusions in Section 4.2.   The function h_post_order works

properly with the other cases discussed so far.
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5.  Economy in Traversal

If multiple PF interpretations can be deduced from a single lexical tree, some of them should

be more economical than the others in the sense that the former take fewer steps than the

latter.  This point can be illustrated by the following data:

(52)    John says that Mary bought books.

(53) a.  [John-ga [ Mary-ga   hon-o    kaw-ta   to ] iw-ru ]

            NOM    NOM book-ACC buy-Past COMP say-Present

       'John says that Mary bought the book.'

    b.  [ John-ga [ hon-o Mary-ga kaw-ta to ] iw-ru ]

       Lit. 'John says that the book, Mary bought.'

    c.  [ [ Mary-ga hon-o kaw-ta to ] John-ga iw-ru ]

       Lit. 'That Mary bought the book, John says.'

    d.  [ [ hon-o Mary-ga kaw-ta to ] John-ga iw-ru ]

       Lit. That the book, Mary bought, John says.'

The English sentence in (52) corresponds to the Japanese sentence in (53a) straightforwardly

but (53b-d) are also possible without any special suprasegmental features. (53b-d) have been

analyzed as involving clause-internal scrambling: (53b) by clause-internal scrambling of the

embedded object and (53c,d) by scrambling of the embedded clause in front of the matrix

subject in (53a,b), respectively.  According to the present theory, (52) and (53a-d) share the

bilingual representation below:                                              

(54) word[0].pfvalue="books-Acc/hon-o";                       8 ([present]/ru)              
                                                         
    word[1].pfvalue="buy/kaw";                               6 (say/iw)       
                                                          
    word[4].pfvalue="Mary-Nom/Mary-ga"; 9 7 (John-Nom/John-ga) 5 (that/to)  
                                                          
    word[5].pfvalue="that/to";                             3 ([past]/ta)
                                                          
    word[6].pfvalue="say/iw";                              1 (buy/kaw)
                                                         
    word[9].pfvalue="John-Nom/John-ga"; 4 2 (Mary-Nom/Mary-ga) 0 (books-Acc/hon-o)

    word[8].pfvalue="[present]/ru";
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    rel[1][0]; rel[1][4]; rel[3][1]; rel[3][4]; rel[5][3]; rel[6][5]; rel[6][9]; rel[8][6]; rel[8][9];

The indices of the embedded and matrix subjects are reindexed from 2 and 7 to 4 and 9,

respectively.  The inorder traversal of (54) with word[8] as the starting node results in (55):

(55)    8-9-8-6-5-3-4-3-1-0  ==> (52)

(54) has three leaf nodes: word[0], word[4], and word[9].  Applying the function

h_post_order to word[0], word[4], and word[9] eventually yield (56a-c), respectively.  The

remaining sentence in (53a) can be obtained by starting from word[9] and giving priority to a

node with a larger index when path ambiguities arise, as in (56d):

(56) a.  0-1-4-1-3-5-6-9-6-8 ==> (53d)

    b.  4-1-0-1-3-5-6-9-6-8 ==> (53c)

    c.  9-6-5-3-1-0-1-4-1-3-5-6-8 ==> (53b)

    d.  9-8-6-5-3-4-3-1-0-1-3-5-6-8 ==> (53a)

Clearly, the postorder traversals in (56d,c), which start from the leaf nearest to the root, take

more steps in pronouncing all the nodes than those in (56a,b) and the inorder traversal in (55).

This conclusion might be a problem since (53a) has been standardly supposed to be the basic

word order.  Actually, quite a few speakers prefer (53c,d) to (53a,b) due to the center-

embedding in the latter.   If a sentence involves two complement clauses, its 'basic' order

according to the traditional analysis necessarily has three consecutive nominative phrases and

double center-embedding, and it is extremely hard to understand.  Preferred starting nodes in

postorder, then, can be said to be those distant from the root, which have relatively small

indices.  

     A similar contrast is found in the pair of English sentences in (57a,b):

(57) a.  It is likely that John will eat bread.

    b.  That John will eat bread is likely.  

As Koster (1978) claims, sentential subjects are non-existent or at least highly marked in

SHC languages.  The inorder traversal of (57a) is more economical than that of (57b) if they

are analyzed as (58a,b), respectively:  
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(58) a.     8 ([present])           b.        8 ([present])
         
    9 (it)    7 (be)                               7 (be)
                                              
              6 (likely)                          6 (likely)
                                              
              5 (that)                         9 5 (that)  
                                             
              3 (will)                           3 (will)
                                             
             1 (eat)                             1 (eat)
                                          
  4 2 (John)      0 (bread)               4 2 (John)  0 (bread)

I assume in (58b) that the sentential argument is selected by the adjective likely and later

raised into the specifier of the matrix tense (or some functional category like TOP).   (58a,b)

are traversed and pronounced as (59a,b), respectively:       

(59) a.  8-9-8-7-6-5-3-4-3-1-0      

    b.  8-9-3-4-3-1-0-1-3-9-8-7-6

After all the nodes within the sentential subject are pronounced, the traversal in (59b)

inevitably involves a few steps to return to the root and pronounce the matrix predicate,

which is not economical.15

6.  Head Movement and Other Remaining Issues

The conception of syntactic structure proposed in this paper is radically different from the

standard one so that more problems have been produced than solved.  One of them is head-

movement.  If head-movement is analyzed as involving two adjacent nodes, how is it

defined graph-theoretically and how is its PF effect deducible?  Move (or internal Merge) is

defined as connecting two nodes that have not been connected in the structure formed.  This

definition does not apply to head-movement since it involves two nodes that have already

been connected.  I suggested in Yasui (2003) that head-movement might be analyzed as

edge-contraction defined in graph theory, which changes the configuration radically.16  An

alternative is to remove the PF value of the moving head and append it to that of the target

head without changing the graph configuration.  
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     Let us explore the second possibility by applying it to the matrix English question in

(60), which is to be analyzed as (61b):

(60)  What will John buy?

(61) a.               5 ([WH])           b.          5 ([WH]-will)

                                                     
                3 (will)                          3 ( )
                                                     
                 1 (buy)                          1 (buy)
                                                    

     4 2 (John-Nom)   6 0(what-Acc)      4 2 (John-Nom)   6 0(what-Acc)

Will is assumed to be moved into the position occupied by [WH].  Removing the PF value of

node 3 and appending it to that of node 5 results in (61b).  Since a target of head-movement

is typically a functional category with no or little phonetic value like [WH] in (61), this

conception of head-movement is reasonable.  The sequence of nodes traversed and

pronounced in (61b) is exactly the same as that in (61a): 5-6-5-3-4-3-1.  Distinct PF-

interpretations are obtained due to the differences in the PF value of nodes 3 and 5.17

     If the idea of edge-contraction is applied to (61a), it is converted to (62):

(62)              5 ([WH]/will)

               1 (buy)

      4 2 (John-Nom)    6 0(what-Acc)

The edge <5,3> is contracted into node 5; subsequently, the nodes connected to node 3 are

reconnected to node 5 and multiple edges are simplified.  The inorder traversal of (62)

produces the incorrect sequence as a matrix question: 5-6-5-4-5-1 (*What John will buy?).

It is because node 5 has three child nodes, and it does not satisfy the pronunciation condition

(i.e., m<=1) after node 6 has been pronounced.  (62) should be rejected as an analysis of

(60).

     Head-movement as edge-contraction, however, might be a possibility for head-final

languages.  In Section 3, the transitive verb construction was analyzed without the light verb.

Larson (1988) and Hale and Kayser assume the light verb for constructions involving three
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arguments like (63).  (63) can be analyzed as (64a) here, with its details set aside:

(63)  John will put some beer in the cooler.

(64) a.      8 (will)                 b.        8 (will)

           6 (v)                             6 (v-put)

      9 7 (John)    3 (put)               9 7 (John)    3 ( )

           4 (some)     2 (in)                 4 (some)     2 (in)

           5 (beer)      1 (the)                5 (beer)      1 (the)

                       0 (cooler)                          0 (cooler)

Removing the PF value of node 3 and appending it to that of node 6 results in (64b).  The

inorder traversal of (64b) correctly produces (63): 8-9-8-6-3-4-5-4-3-2-1-0.  If the edge

<6,3> in (64a) is contracted into node 6, the overall configuration is radically altered as

follows:

(65)            8 (will)

                6 (v-put)

  9 7 (John-Nom)  4 (some-Acc)  2 (in)

                 5 (beer)      1 (the)
      
                             0 (cooler)

Node 6 has become ternary-branching, which causes the inorder traversal of (65) to lead to

the incorrect sequence, 8-9-8-6-4-5-4-6-2-1-0 (*John will some beer put in the cooler).  

The two internal arguments are sisters in (64b), to which the subject is added as the third

sister in (65).  The subgraph rooted by the contracted node 6 is quite similar to the flat

structure assumed for Japanese by Hale (1980, 1981).  Consider the Japanese counterpart of

(63) given in (66):
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(66)          (irerudarou)               

     (John-ga)    (biiru-o)     (ni)

                           (kuuraa)

Japanese and many other head-final languages are characterized as agglutinated in that a

verbal base is affixed with a number of bound morphemes that semantically correspond to

modal auxiliary verbs like will.  The root in (66) has the meaning will put, and it presumably

results from multiple edge-contractions to the Japanese counterparts of the edges consisting

of put, v and will in (64).  The three arguments are hierarchically non-distinct in (66), which

appears better fitted to derive the six permutations of them given below:

(67) a.  John-ga biiru-o     kuuraa-ni irerudarou.

           -Nom beer-Acc cooler-in  will-put

        'John will put beer in the cooler.'

    b.  John-ga kuuraa-ni biiru-o irerudarou.

    c.  biiru-o kuuraa-ni John-ga irerudarou.

    d.  kuuraa-ni biiru-o John-ga irerudarou.

    e.  biiru-o John-ga kuuraa-ni irerudarou.

    f.  kuuraa-ni John-gabiiru-o  irerudarou.

The hierarchical postoder traversal algorithm proposed in Section 4 can derive (67a-d) from

the highly configurational lexical graph corresponding to (64b) with some modifications, but

it in principle cannot produce (67e,f).  The crucial difference is that the two internal

arguments are pronounced consecutively in the former but they are interrupted by the subject

in the latter.  If the flat structure in (66) is posited instead, all the six sentences in (67) are

more naturally derivable from the hierarchical postoder traversal algorithm with slight

modifications

      Besides the treatment of head movement, quite a few issues remain to be explored.  I

will take up two of them.  First, modified versions of the inorder and postorder tree traversal

algorithms have been argued to yield SHC and SCH order of natural languages from common
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lexical graphs, respectively.  A question arises what languages, if any, are derived by

preorder traversal.  The root should be a natural starting node in a preorder traversal just as

in an inorder traversal.  Each node is pronounced in its first visit regardless of the number of

unpronounced child nodes it has; so the conditional in line 10 of (40) is not necessary.  If

nodes are traversed strictly in the descending order of their indices as in an inorder traversal,

the preorder traversal of a given lexical graph yields a single ordering of its nodes.

Alternatively, since there is no restriction on the pronunciation timing, traversing of nodes

itself might be unrestricted; it may proceed in any direction at a branching node.  Then,

more than one ordering would be derivable through the preorder traversal of a single lexical

item tree.  Bearing on Chung (1990), Fukui (1993: 414-416) argues that Chamorro is

underlyingly VOS (or HCS) and its surface VSO order is derived by optional leftward

adjunction of spec to the right of the verb, which does not destroy its head-initiality.  The

second conception of preorder traversal is consistent with Fukui's analysis of Chamorro.

     Second, there are no places for adjuncts in the present theory, where a lexical item is

connected to another item in terms of selection or agreement only.  Lebeaux's analysis of

introducing adjuncts by generalized transformation rather than base-generation is one

possibility.  I explore another possibility along the line of Phillips (2003) in Yasui (2004).  

I will leave the two issues and many others for future research.
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1  In Kayne (1994), a case-particle is analyzed as a head taking a sentential complement,

from which a DP moves to its specifier position.  A postposition is assumed to be a head

taking a DP complement, which moves to its specifier position in Kayne (1994) or the

specifier position of some higher abstract head in Kayne (2003).  In this way, head-final

languages are not analyzed as mirror-images of head-initial languages.

2  As Takahashi (1993) shows, long-distance scrambling is semantically non-vacuous.  I
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will deduce cases of local scrambling from the structure that underlies the so-called basic

word order sentence, assuming that long-distance scrambling is triggered by some functional

category that does not exit in the underlying structure of its non-scrambled counterpart.

3  If heavy NP shift resists for multiple applications, the possibility mentioned by Fukui

(1993: note 10), it differs from scrambling in this respect, which can apply iteratively.

4 If V in (15) continues to have node 0, this does not matter, as <1,0> in E has been replaced

by <1,3>.

5 The subject/object (or external/internal) argument asymmetry has been amply justified by

Marantz (1984) and subsequent work.  A more refined version of (16) is given by Larson

(1988, 1990).  (16) should not be regarded as a syntactic constraint but as originating in our

lexical knowledge

6  Frampton and Gutmann (1999, 2000) do not discuss examples involving Ds such as (i):

(i)  The woman met the man.

An N should be introduced before a D in the case of the object but a D should be introduced

before an N in the subject according to their theory.  This difference in indexing does not

cause any problem in my theory.

7  See Antonakos and Mansfield (2000) and others.

8  In the common inorder algorithm, nodes of a left-linear subgraph are pronounced from the

leaf toward the root but those of a right-linear subgraph are pronounced in the opposite

direction.  In the inorder traversal proposed here, nodes are pronounced from the root in

both cases.

9   Thus, (10i,ii) are not necessary; (16) as an extension of (10iii) is crucial in distinguishing

spec from complement.  See Yasui (2004).

10  If a node with a smaller index is given priority, the postorder traversal of (34) that starts

from the root produces another sequence: 5-3-1-4-1-6-1-3-5.  This corresponds to the

embedded clause of (33c) and the set of edges traversed is the same as (35a).

     Ignoring edges such as <3,4> and <1,6> produces other spanning trees of (34).  They
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appear to correspond to postorder traversals that start from the root and proceed either way at

the three branching nodes of (34).  Removing <3,1> and <5,4> yields a non-tree; node 5 can

no longer dominate nodes 1 and 6.

11 They use declarative sentences without wh-phrases.

12  Kayne (1994: 24) discusses the contrast between whose article and articles by who(m).

If whose is analyzed as a determiner rather than the specifier of the genitive -s, the account

offered in the text applies to Kayne's examples.

13  (46) is part of the larger algorithm that contains those mentioned in note 5.  The variable

sp appears in the latter.  The complete script of h_in_order and that of h_post_order to be

given shortly, with the structure-building system, are available at

http://kasiwagi.dokkyo.ac.jp/~myasui/general/profile/profile.html.

14 (38), for instance, has the following form in C:

     ...

     int sp=4;

     struct tfield word[4]={{"men-Nom",0},{"arrive",0},{"will",0},{"men-Nom",0}};

     int rel[4][4]; ...

     main(){ rel[1][3]=1; rel[2][1]=1; rel[2][3]=1; ...

"Men-Nom" is listed twice as word[0] and word[3], but it is not problematic since index 0

does not appear in any of rel[i][j]s.  See note 3.

15  There are also several returning steps at the end of the sequence in (59a), but they can be

eliminated easily by stopping the traversal immediately when all the nodes have been

pronounced

16  See Diestel (2000: 16) and others.

17  "What did John buy?" is likewise derivable if did is base-generated like will in (61).


